#13 SINTETIZZATORE: NOISE GENERATOR

0
Ben ritrovati!
Oggi parliamo del rumore e del Noise Generator, un utilissimo modulo utilizzato sia come sorgente che come controllo.
Prima di affrontare l’argomento è fondamentale un ripasso della lezione su spettro, ottave, parziali e armoniche…tutti termini che diamo per acquisiti.

[expander_maker more=”Read more” less=”Read less”]

Il Noise Generator è un modulo volto a originale un rumore di tipo elettronico, identificato col nome di vari colori (white, pink) a seconda delle differenze spettrali.

Si parla di segnali non periodici, quindi non si ha un altezza (o nota) definita, o per meglio dire il Noise contiene tutte le frequenze dello spettro al punto tale da non renderle distinguibili.
Pensate al rumore di una cascata, o della pioggia: è creato da un numero infinito di gocce e quindi di suoni diversi che, sommandosi, danno vita al rumore che tutti conosciamo.

 

Nel sintetizzatore vengono utilizzati principalmente due tipi di rumore:
1. White Noise: origina la stessa ampiezza (intesa come volume) per ciascuna delle frequenze dello spettro udibile.
2. Pink Noise. origina la stessa ampiezza per ciascuna ottava dello spettro udibile, e l’ampiezza si dimezza salendo di ogni ottava.

 

Nel Pink Noise l’energia per ottava è costante e ciò significa che quella corrispondente ad ogni frequenza si dimezza ad ogni ottava.

Nel White Noise l’energia per ottava raddoppia perchè l’ampiezza di ogni frequenza resta costante.

 

Se hai ben capito la lezione sui filtri capirai che dal White Noise si può ottenere il Pink Noise usando un filtro Low Pass a 1 polo (perchè togliere 6dB per ogni ottava equivale a dimezzare).

Il Noise Generator è utile sia per effettistica che per creare suoni percussivi elettronici e di seguito andiamo a vedere qualche esempio chiarendo il ruolo di ogni modulo usato.
Ricordiamo che scaricando questa riproduzione virtuale di sintetizzatore analogico e con le conoscenze finora acquisite potrete sperimentare voi stessi quanto scritto.
A proposito, in questo corso ogni parola è ben calibrata e per capire a pieno i collegamenti consigliamo una lettura molto lenta: ti renderai conto che tutte queste sigle rappresentano dispositivi il cui funzionamento è più facile di quel che sembra.

 

ESEMPIO 1 – EFFETISTICA
Colleghiamo il Noise Generator a un VCF (low pass) e successivamente a un VCA per poi raggiungere l’uscita.
Facciamo controllare il VCA dall’Envelope Generator, il VCF da un LFO e l’Envelope Generator dal Gate della tastiera.
Con questi collegamenti otteniamo il rumore del vento.
In questo caso il VCF serve a scurire il rumore, ed è fondamentale che sia controllato in tensione dall’ LFO
Il VCA serve per far attaccare il vento solamente quando premo un tasto, ed essendo controllato dall’Envelope Generator posso fare in modo che il rumore sia caratterizzato da un attacco e un rilascio lenti.
La risonanza permette di simulare i fischi prodotti in natura dal vento.
ESEMPIO 2 – SUONI PERCUSSIVI:
Per ottenere suoni percussivi occorre collegare il Noise Generator a un VCF, a sua volta collegato ad un VCA, infine collegato all’uscita.
Il Gate della tastiera in questo caso deve controllare due Envelope Generator: il primo controllerà a sua volta il VCA e il secondo controllerà il VCF.
Tramite gli inviluppi e i filtri è dunque possibile simulare andamenti e timbri dei suoni percussivi.
Nel prossimo capitolo parleremo del portamento, ovvero del passaggio graduale da una nota ad un altra, e di come riprodurlo col nostro sintetizzatore.
A presto!

 

[/expander_maker]


Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#12 SINTETIZZATORE: OSCILLATORE A BASSA FREQUENZA (LFO)

0

Il modulo di cui parliamo oggi è, a livello creativo, uno dei più importanti.
A causa è nelle sue molteplici applicazioni è alla base di effetti come vibrato, tremolo e whawha: oggi finalmente ne capirai a pieno il funzionamento.
Parliamo dell’ LFO, un oscillatore a bassa frequenza, appartenente alla categoria dei controlli.

Il suo compito è quindi impartire ordini ad altri moduli, come  VCA, VCO e VCF.

[expander_maker more=”Read more” less=”Read less”]

Lavora principalmente al di sotto delle frequenza udibili (sotto i 20hz), ma il suo è un segnale di controllo e il suo scopo non è di essere ascoltato, ma di agire su parametri del modulo a cui lo applicheremo.
Essendo un oscillatore, genera un segnale periodico e sposta ciclicamente un determinato parametro tra due valori.

Le regolazioni su cui possiamo agire sull’ LFO sono due:

 

– Velocità dell’oscillatore:  nel tuo synth può chiamarsi frequency, speed  o rate e oscilla generalmente tra 0,1 fino a 18/20/30 hz.

– Forma d’onda:
Abbiamo già parlato delle forme d’onda e prima di leggere quanto segue consigliamo un veloce ripasso.
Nell’ LFO la forma d’onda viene utilizzata come un controllo e in base a quale scegliamo, non otteniamo variazioni di timbro ma modificazione dell’andamento impartito al parametro.
I risultati ottenuti con la sinusoide e la triangolare sono molto simili in quanto offrono un andamento graduale, e sono le più utilizzate.
La dente di sega è utilizzata sia normale che capovolta, offrendo una salita istantanea seguita dalla discesa graduale di un parametro.
Nell’andamento della quadra abbiamo un alternanza di due valori, in quanto il parametro viene alzato ed abbassato senza valori intermedi.
Veniamo agli esempi, che chiariranno ogni dubbio.
 
Applicando LFO al VCO ottengo il vibrato, ovvero una variazione ciclica dall’altezza (la nota) ad una velocità elevata (da 4 a 6 cicli al secondo). 
 
Applicando LFO al VCA ottengo il tremolo ovvero una variazione periodica dell’ampiezza (del volume)

Collegando LFO al VCF ottengo il wha- wha ovvero una variazione ciclica del timbro.
 

Potete sperimentare quanto spiegato con questa riproduzione virtuale di un synth analogico.

Nel prossimo episodio parleremo del Noise Generator, fondamentale per la creazione suoni percussivi e ell’effettistica in generale.
Ci vediamo lì!

[/expander_maker]

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la c conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#11 SINTETIZZATORE: I FILTRI (VCF)

0
Ora che abbiamo chiarito i concetti di parziali e armoniche, possiamo definire “filtro” come qualcosa che agisce in maniera sottrativa sul segnale sorgente, attenuando determinate parziali.
Daremo per scontate alcune conoscenze riguardo lo spettro, per cui consigliamo un ripasso del capitolo sulle forme d’onda, specie nella sua parte finale. 
Oggi, oltre a spiegare in maniera intuitiva come agiscono i filtri,  ci concentreremo sui parametri di intervento comuni a tutti i synth.

[expander_maker more=”Read more” less=”Read less”]

In questo caso il modulo che ci interessa, appartenente alla categoria dei modificatori, si chiama VCF (voltage controlled filter) e di seguito ne spiegheremo il funzionamento, con tanto di parametri comuni ai vari sintetizzatori.
Il VCF si basa sulla presenza di quattro tipi di filtro: due primari (low pass / hi pass) e due composti (band pass / band reject):

 

 

Low Pass non permette alle alte frequenze di essere riprodotte, lasciando passare soltanto i bassi.

 

 

 

High Pass svolge la funzione opposta bloccando le frequenze basse e permettendo la riproduzione di quelle alte.

 

Band  Pass è ottenuto dal collegamento in serie dei filtri precedenti e permette una riduzione di alte e basse frequenze.

 

 

 

Band Reject (o Notch) è ottenuto tramite un collegamento in parallelo e da luogo ad un attenuamento delle parziali intermedie dello spettro.

Il parametro fondamentale, comune a tutti i sintetizzatori è  Frequency (frequenza di taglio) ed indica da che frequenza ha origine l’attenuamento.
Solitamente nei sintetizzatori il parametro Q/Slope (pendenza)  indica quanto l’intervento del filtro è ripido, e si misura in decibels di attenuazione per ottava, o poli. 
Ogni polo corrisponde a 6 decibel, e per darti un idea attenuare di 6dB equivale a dimezzare l’ampiezza della orma d’onda (il volume).

Un altro importante parametro è Resonance Peak, una manopola/potenziometro di tipo continuo che crea un’enfatizzazione delle parziali vicine alla frequenza di taglio.

Se portiamo la risonanza a livelli massimi il filtro entra in auto oscillazione generando una forma d’onda sinusoidale pari alla frequenza di taglio.

 

ESEMPIO:
con il filtro High Pass, impostiamo la frequenza di taglio a 10.000hz, con una pendenza di 12dB per ottava. Con questo settaggio, a 5000hz avremo una riduzione di 12dB, mentre a 2500hz di 24db e così via.

 

La gran parte dei  sintetizzatori lavora in sintesi sottrattiva, perchè il filtro attenua o toglie le parziali Le forme d’onda più utili al fine sottrattivo sono quelle con più parziali (quadra e dente di sega).
Con le conoscenze finora acquisite e con questa riproduzione virtuale di un sinth, puoi cominciare a creare i tuoi suoni partendo da un semplice segnale elettrico.

Nel prossimo capitolo parleremo dell’ oscillatore a bassa frequenza, modulo per eccellenza tra i controlli e che ci apre la strada a infinite possibilità.

 

[/expander_maker]

 

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la c conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#10 SINTETIZZATORE: GENERATORE DI INVILUPPO (ADSR)

0
Abbiamo capito che il VCO (oscillatore) si occupa della frequenza del segnale, mentre il VCA (amplificatore) di questioni relative all’ampiezza.
Oggi parleremo di un segnale di controllo che possiamo applicare al VCO o al VCA, ottenendo variazioni programmate rispettivamente della frequenza e dell’ampiezza.

[expander_maker more=”Read more” less=”Read less”]

 

E’ essenziale sapere cos’è un “segnale di controllo” e per questo rimandiamo al capitolo della panoramica sul sintetizzatore.

 

Come probabilmente saprai ogni suono ha un attacco, seguito da un decadimento, da una fase di sostegno, quindi da una di rilascio.
Capirai quando dico che un violino ha un attacco meno immediato di un pianoforte, mentre può avere una fase di sostegno più lunga, avendo la possibilità di “mantenere” la nota.
Nel generatore d’inviluppo (ADSR) queste fasi corrispondono a dei parametri su cui possiamo intervenire, programmando un segnale  variabile nel tempo che controllerà a sua volta i parametri del modulo a cui lo applicheremo.
Eccone una chiara definizione delle varie fasi:

 

 

1. ATTACK: o attacco, è il tempo impiegato dal segnale di controllo generato per andare al massimo partendo da zero.
2. DECAY: o decadimento, è il tempo impiegato dal segnale di controllo generato  per andare dal massimo al livello si sostegno.
3. SUSTAIN: o sostegno, è il livello a cui si mantiene costante il segnale  fino all’inizio della fase di rilascio
4. RELEASE: o rilascio, è il tempo impiegato dal segnale  per andare dal livello a cui si trova a zero.

 

La fase di attacco comincia quando il segnale di Gate (vedi capitolo precedente) che controlla l’ADSR  passa da off a on, la fase di rilascio quando passa da on a off.

 

Questo modulo apre la strada ad una serie infinita di possibilità perchè ci permette di dare un andamento alle varie caratteristiche di un suono.
Non solo su frequenza e ampiezza, ma anche sullo spettro: possiamo applicare il generatore d’inviluppo al VCF (voltage controlled filter), importante modulo modificatore che andremo a presentare nel prossimo capitolo.

 

Riassumendo: collegando il Gate della tastiera al generatore d’inviluppo e l’uscita dell’inviluppo al Gain del VCA puoi settare l’andamento del suono dal generatore di inviluppo. Tale segnale di controllo può essere  collegato al VCA (volendo agire sull’ampiezza), al VCF (volendo agire sullo spettro), o al VCO (volendo agire sulla frequenza).

 

Con la conoscenza finora condivisa dovresti essere già in grado, partendo da zero, di ottenere il prototipo del suono che stai cercando.

 

Se non l’hai ancora fatto scarica direttamente dal sito della celebre casa produttrice la riproduzione virtuale di un sinth analogico e divertiti collegando i primi moduli affrontati (oscillatore, amplificatore e generatore d’inviluppo) per sperimentarne il funzionamento.
per MAC

[/expander_maker]

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la c conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#09 SINTETIZZATORE: L’AMPLIFICATORE (VCA)

0
Lo scorso capitolo ci siamo occupati della forma d’onda e della frequenza del nostro segnale audio, corrispondenti rispettivamente a timbro e altezza (intesa come nota).
Oggi ci occupiamo dell’ampiezza, ovvero di tuto ciò che riguarda il volume del segnale audio, tramite il primo della serie di moduli modificatori che descriveremo: il VCA (voltage control amplifier)

[expander_maker more=”Read more” less=”Read less”]

 

Prima di fare questo consigliamo assolutamente di scaricare gratuitamente QUESTA demo di sintetizzatore modulare direttamente dal sito della celebre casa produttrice (Clavia): potrete sperimentare quanto descritto in questi capitoli direttamente sulla riproduzione virtuale di un sintetizzatore analogico.
per MAC

Probabilmente il tuo sintetizzatore è compatto e precablato, ed i meccanismi che andremo a spiegare in questo capitolo risultano invisibili, ma è bene avere una completa cognizione del percorso del segnale per poterlo elaborare ottenendo esattamente ciò che vogliamo.

Dunque…
Una volta generato il segnale con il VCO, questo dev’essere prelevato e consegnato ad un’altro modulo, con lo scopo di modificarlo e ottenere il suono che vogliamo.
Ricordiamo che una volta acceso il VCO genera un segnale continuo e quindi senza pause.
Per gestire l’ampiezza, e quindi anche il silenzio, del nostro segnale audio ci affidiamo al VCA (amplificatore controllato dal voltaggio).

 

Il parametro principale di questo modulo è il famigerato Gain, da tradursi in italiano con “guadagno””, ed è utilizzato per aumentare ma soprattutto ridurre l’ampiezza della forma d’onda.

 

Il VCA ha anche il compito di dare una durata al nostro suono, facendolo cessare quando si alza il dito dal tasto.
Per fare questo riceve dalla tastiera un ulteriore segnale (oltre al voltaggio) detto Gate, che si basa sul sistema binario con i valori di acceso/spento.
Quando il cancello (gate) è aperto il suono passa, quando è chiuso il suono non passa.

 

Sostanzialmente, partendo da un segnale elettrico  stiamo creando passo passo il suono che vogliamo, per poi averlo a disposizione sulla tastiera.
Ma il suono oltre ad un timbro, una nota ed un volume ha altri aspetti fondamentali che lo caratterizzano e nel prossimo capitolo parleremo dell’inviluppo, ovvero delle fasi di attacco, sostegno, rilascio e decadimento del suono.

 

Applicheremo all’ingresso CV del  VCA un segnale di controllo (non sai cos’è? vedi capitoli precedenti) proveniente dall’ envelope generator (generatore di inviluppo), facendolo agire sull’andamento del suono.
Alla prossima!
 

[/expander_maker]

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la c conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#08 SINTETIZZATORE: L’OSCILLATORE (VCO)

0
Eccoci finalmente a presentare il dispositivo da cui ha origine il segnale elettrico nel nostro sinth, ma prima di parlare questo modulo consigliamo una veloce rilettura dei capitoli precedenti, in modo da avere una completa padronanza dei termini che useremo.

[expander_maker more=”Read more” less=”Read less”]

 

Parole come “periodico“,  “voltaggio“, “hertz” o “ottava” devono essere per noi ben chiare.
Nella prima parte del capitolo oltre a definire il modulo in questione, faremo luce sui suoi parametri, mentre nella parte finale  chiariremo il concetto di spettro e armoniche.
A fine capitolo conoscerai il ruolo di ognuna delle manopole (il termine tecnico per manopola è potenziometro) e dei vari ingressi/uscite che vedi nell’oscillatore qui sotto.

 

Partiamo!
VCO è l’ abbreviazione di “voltage controlled oscillator“, in italiano  “oscillatore controllato dal voltaggio”.

 

Questo modulo è il principale tra i moduli sorgenti e genera un segnale periodico in banda udibile (tra i 20 e i 20000 hertz) la cui frequenza è controllabile dal voltaggio e la cui forma d’onda (il timbro) è caratterizzata da determinati andamenti geometrici. 

 

Se questa definizione ti sembra complessa non disperare, una volta letto il capitolo ne capirai a pieno il significato.

 

I parametri su cui possiamo agire nel nostro VCO sono:

 

1) FORMA D’ ONDA:  come abbiamo ormai capito, i suoni dotati di una frequenza derivano dalla ripetizione continua di un determinato ciclo di oscillazioni.
La forma d’onda rappresenta l’andamento dell’oscillazione durante questo ciclo e ne troviamo principalmente di quattro tipi:
Sinusoidale

Triangolare

Quadra

A dente di sega
A seconda della forma d’onda scelta otterremo un suono più rotondo (come nel caso dell’onda sinusoidale) o più graffiante (come  nella “dente di sega).
Nei sintetizzatori compatti è possibile selezionare la  forma d’onda che intendiamo utilizzare tramite un potenziometro, mentre  nella gran parte dei sintetizzatori modulari (come quello in foto) troviamo quattro uscite corrispondenti ognuna ad una delle quattro principali forme d’onda.
A seconda dell’uscita che sceglieremo, otterremo un timbro di partenza diverso.
Ricordiamo per maggiore chiarezza che in questo tipo di sintetizzatori ogni modulo è dotato di un ingresso e di un uscita: il suono esce dal vco tramite un uscita a cui viene collegato un cavo, che porterà il segnale elettrico nell’ingresso di un modulo modificatore.

 

2) FREQUENZA: è l’altro parametro fondamentale di ogni VCO ed è controllato solitamente da due potenziometri.
Il primo si muove a scatti, è detto commutatore e serve a selezionare l’ottava (nel tuo sinth questo tasto può chiamrsi “range” o “octave“).
Il secondo potenziometro non si muove a scatti, ma in modo graduale e nel tuo synth può prendere il nome di frequency, pitch, o tune.
Sostanzialmente: una volta scelta l’ottava possiamo scegliere la frequenza esatta di partenza tramite questo frequenziometro, che ha due tipi di utilizzo
Il primo è curativo (perchè anche i sintetizzatori si scordano e vanno accordati) e il secondo è creativo (se per esempio stiamo utilizzando due VCO sovrapposti, possiamo creare lievi differenze di accordatura per  ottenere un timbro più ricco).

 

L’ingresso per i moduli di controllo (se non sai cosa sono vedi il capitolo precedente) è detto CV (control voltage) e troviamo spesso un secondo ingresso noto come CV2, a cui corrisponde un potenziometro noto come attenuatore del segnale di controllo.
Questo potenziometro permette di diminuire la quantità d’intervento del segnale di controllo (funziona come un rubinetto e quindi può solo attenuare).

 

Nei sintetizzatori  compatti, che sono precablati, per evitare che un controllo influisca su un certo parametro bisogna chiudere l’attenuatore.
Una volta acceso, il vco continua ad oscillare ininterrottamente, sarà compito del VCA (voltage controlled amplifier – modulo che studieremo tra poco) zittirlo, in modo da non avere suono a meno che non venga premuto un tasto della tastiera
Come accEnnato nei capitoli precedenti, ad ogni tasto corrisponde un voltaggio e quindi una frequenza.

E’ questo voltaggio che viene trasmesso al VCO, controllandolo.

SPETTRO, ARMONICHE e FORME D’ONDA

 

Lo spettro è la scomposizione di una forma d’onda nelle sue parziali (forme d’onda sinusoidale non ulteriormente scomponibili)
Le parziali che  hanno una frequenza multipla della fondamentale (la parziale di riferimento della nota che stiamo suonando),  vengono dette armoniche.

 

 

 

Nell’onda a dente di sega lo spettro è costituito da tutte le parziali della serie naturale delle armoniche, ciascuna avente ampiezza pari all’inverso del proprio numero d’ordine (andamento discendente).
Nell’ onda quadra lo spettro è identico a quello della dente di sega ma mancano le parziali di ordine paro.
Nell’onda triangolare lo spettro è come quello della quadra ma l’ampiezza delle parziali presenti è pari all’inverso del quadrato del proprio numero d’ordine.

Nell’onda sinusoidale lo spettro è costituito dalla sola parziale fondamentale.

Bene….ogni VCO di ogni sintetizzatore si bassa sui principi qui esposti!
Nella prossima lezione inizieremo ad occuparci dei moduli modificatori, più precisamente VCA (voltage controlled amplifier), assolutamente fondametale per gestire l’ampiezza (e quindi anche volume e silenzio) del nostro segnale audio!
A presto!

[/expander_maker]

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#06 SINTETIZZATORE: CENNI STORICI E CURIOSITA’

0
Come promesso il capitolo di oggi sarà meno tecnico e più focalizzato sulle tappe che hanno portato il sintetizzatore ad essere lo strumento di maggiore impatto nel ventesimo secolo.
Nonostante la lezione di oggi sia ricca di cenni storici e curiosità,  verranno descritte alcune importanti caratteristiche relative alla polifonia ed al voltaggio.
Consigliamo quindi una lettura appassionata di quanto segue, ed un ripasso del capitolo precedente per avere cognizione dei termini che useremo.

[expander_maker more=”Read more” less=”Read less”]

 

 

In seguito alla sua invenzione ad opera di Robert Moog e Donald Buchla, il sintetizzatore subì un’ inaspettata diffusione a causa di  vari fattori.
Una delle figure chiave fu la produttrice Rachel Elkind che nel 1968 rimase affascinata dai rifacimenti tramite sintetizzatore di alcune opere di Bach per mano del fonico Walter Carlos (divenuto Wendy Carlos dopo il cambiamento di sesso).
Rachel decise di produrne un album e vide cosi la luce “Switched on Bach” il disco che non solo definì il sintetizzatore come strumento vero e proprio, ma diede origine ad un intero filone musicale.

 

 

La nascita dei sintetizzatori compatti (o integrati) favorì ulteriormente la diffusione di questo strumento, poiché erano precablati internamente.
Non necessitavano quindi di collegamenti esterni tramite cavi al contrario dei sintetizzatori modulari, in cui il segnale elettrico doveva essere fisicamente trasportato da un modulo all’altro per essere modificato.
In più i nuovi sinth erano adatti a performance in quanto trasportabili, caratterizzati da una dotazione minima (indispensabile) di moduli e da prezzi ridotti.

 

Ebbe inizio in questo modo la vendita sistematica nei negozi, e mentre Buchla scelse di restare al di fuori di un qualsiasi circuito commerciale, videro la luce numerose case produttrici.

La ARP (Alan R. Pearlman) diede origine verso la fine degli anni settanta al suo primo modello, l’ “ARP 2500”, dotato di “Matrix switching system” (i collegamenti non si ottenevano tramite cavi, ma tramite degli scambi, levette). Il modello compatto di questa casa produttrice venne chiamato Odyssey, e fu dotato di sliders anziché potenziometri.

 

La EMS (Electronic Music Studios) , con sede a Londra, si impose sulla produzione europea. Il “SINTHY VCS3” fu un sintetizzatore compatto e modulare caratterizzato da dei collegamenti a “matrice di pin” (sistema a battaglia navale in cui inserendo una punta metallica a delle precise “coordinate” si metteva in collegamento una determinata uscita con un determinato ingresso). Altri rilevanti modelli prodotti da questa casa furono il “SINTHY A”,di dimensioni inferiori a una ventiquattrore, e il “SINTHY 100”, un grossissimo modulare.

 

 

Alla casa produttrice OBERHEIM si deve l’ invenzione dei primi sintetizzatori polifonici. Il primo passo è stato il “SEM” (synthetizer expander module), un piccolo sintetizzatore compatto non dotato di una tastiera ma progettato su un volt per ottava. Questa caratteristica permetteva di collegarlo ad un altro sintetizzatore e quindi mandare lo stesso voltaggio a due sintetizzatori ottenendo due note uguali. Il passo successivo è stato il “4 VOICES”, composto da quattro SEM collegati e quindi in grado di originare quattro note diverse.

 

 

Si capisce che per il funzionamento del “4 VOICES” era necessaria un interfaccia in grado di inviare 4 voltaggi contemporaneamente, e l’invenzione di questo strumento, noto come “digital scanning keyboard” (tastiera a scansione digitale) si deve alla casa produttrice EMU. La particolarità di questa tastiera risiedeva nel fatto che un computer interno faceva in modo che ogni tasto aggiuntivo premuto mandasse un voltaggio a un Sem diverso. Giunti a dover suonare il quinto tasto il primo Sem interpellato riceveva un nuovo voltaggio. Il microprocessore controllava continuamente la tastiera per verificare se era stato premuto o rilasciato un nuovo tasto (scanning).
Caratteristiche del 4voices erano delle memorie in grado di salvare le impostazioni scelte, inoltre con un solo pannello era possibile regolare i potenziometri di tutti i Sem. Una volta fatto ciò si potevano memorizzare i valori elettrici di ogni potenziometro e richiamarlo con un semplice tasto.

 

La casa produttrice SCI (Sequential Circuits Inc.) diede successivamente vita al “PROPHET 5“, un polifonico a cinque voci in cui i moduli dei singoli sintetizzatori non erano più visibili, in quanto lo strumento era dotato di un solo pannello in grado di comandare tutte le voci di tutti i moduli (tipico esempio di tecnologia invisibile).

 

 

Nonostante la diffusione dei polifonici la produzione di monofonici non fu interrotta a causa del basso costo di questi ultimi.

 

Nel prossimo capitolo cominceremo finalmente ad esaminare i vari moduli che compongono il sintetizzatore, spiegandone il funzionamento e rendendoti capace di ottenere il suono che ricerchi partendo dal segnale elettrico.
Ti consigliamo di ripassare il capitolo sulle caratteristiche del suono e quello sull’introduzione al sintetizzatore, perchè useremo termini che oramai diamo per scontati.

[/expander_maker]

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#05 SINTETIZZATORE: CARATTERISTICHE E PARAMETRI

0
Ora che conosciamo le caratteristiche fisiche del suono, possiamo rivolgere la nostra attenzione al sintetizzatore e delineare le sue caratteristiche principali, per poi arrivare ad una spiegazione dettagliata delle parti che lo compongono passando ovviamente per qualche cenno storico!

[expander_maker more=”Read more” less=”Read less”]

Mentre negli strumenti acustici il suono è conseguenza di una vibrazione meccanica, negli strumenti elettronici la generazione sonora è priva di parti meccaniche, ed è data esclusivamente dall’elettronica.

 

 

Nonostante la nascita dei primi strumenti elettronici risalga all’inizio del novecento, i primi modelli di sintetizzatore hanno origini ben più recenti. Si può datare infatti la loro invenzione verso metà degli anni sessanta, per opera di Robert Moog e Donald Buchla.

 

Si trattava di sintetizzatori modulari (composti da più moduli che, a seconda del suono desiderato, venivano o meno utilizzati), monofonici (in grado di originare una sola nota per volta, diversamente dagli strumenti polifonici, ovvero dotati di più sorgenti sonore che l’esecutore può controllare indipendentemente le une dalle altre) e analogici.

 

Il fatto che fossero monofonici è conseguenza di due fattori: per suonare due note contemporaneamente erano necessari due sintetizzatori, e questo comportava una grossa spesa e una grandissima precisione nel settare in modo identico tutti i moduli. Inoltre le tastiere stesse erano progettate per gestire un solo sintetizzatore.

 

La distinzione tra analogico e digitale (da “digit”, numero) risiede nel fatto che nel primo caso il segnale che rappresenta l’ informazione è analogo all’informazione stessa (nel giradischi e nelle musicassette il solco che viene letto è una rappresentazione continua dell’onda sonora, che ricalca completamente il suo andamento) mentre nel secondo caso il segnale che rappresenta l’informazione è una codifica numerica dell’informazione stessa, che viene rappresenta con un numero FINITO di numeri.

Per esempio, la risoluzione di una fotografia è data dal numero di pixel che contiene ma, per quanti che siano, non saranno mai in grado di rappresentare tutti i punti effettivi che compongono l’oggetto fotografato, poichè essi sono infiniti.

Se ne deduce che il digitale è caratterizzato da una perdita di informazioni rispetto all’analogico.

I sintetizzatori erano, e sono tuttora, dotati di un interfaccia, ovvero di un sistema che permette di collegare due o più entità al fine di scambiarsi informazioni.

I requisiti tramite cui due entità possono comunicare sono di tipo fisico (devono poter essere fisicamente in relazione tra loro, per esempio tramite dei cavi) e di tipo logico (le due entità devono parlare lo stesso linguaggio). Un chiaro esempio di interfaccia è la tastiera, che opportunamente collegata al sintetizzatore è in grado di inviare a quest’ultimo le informazioni desiderate dal musicista.

 

I comandi sono inviati al sintetizzatore tramite una caratteristica della corrente elettrica, il voltaggio. Nelle tastiere ogni tasto corrisponde ad un preciso voltaggio, ed ogni voltaggio ad una frequenza. La corrispondenza tra voltaggio e frequenza è di un volt per ottava (per ogni salto di ottava il voltaggio sale di uno, quindi il volt è diviso in dodici, come le note della scala musicale).

 

Controllare il sintetizzatore significa intervenire su tre parametri oggettivi, che trovano una corrispondenza soggettiva nella percezione umana (vedi capitolo 1):

  1. La frequenza indica il numero di cicli della forma d’onda in ogni secondo, ed è quindi misurabile. Equivale percettivamente all’altezza di un suono, ovvero alla nota che caratterizza il suono: l’altezza è soggettiva in quanto relativa alle nostre percezioni e può cambiare a seconda del contesto culturale
  2. L’ampiezza corrisponde all’ escursione dell’onda sonora, ovvero all’ampiezza del movimento dell’oscillazione. Corrisponde soggettivamente all’intensità, la quale viene percepita in maniera diversa a seconda dell’individuo (con l’avanzare dell’età si tende a percepire meno suoni ad una bassa intensità)
  3. La forma d’onda indica appunto la forma dell’onda, che può essere di vario tipo ma comunque misurabile. Questa determina il timbro di un suono, ovvero l’identità sonora, ciò che ci permette di distinguere il suono di un pianoforte da quello di una chitarra. Anche tra strumenti dello stesso tipo il timbro cambia, a seconda della qualità, ma la scelta di un timbro rispetto ad un altro da parte del musicista o dell’ascoltatore dipende dal gusto personale. Pizzicando per esempio la corda di una chitarra in vari punti diversi posso ottenere suoni metallici o più pieni.
Prima di spiegare il funzionamento vero e proprio del sintetizzatore è bene raccontarne la storia e l’evoluzione.
Non è bene, invece, condensare in una sola lezione troppe informazioni o rischiereste di perderne qualcuna.
A tra qualche giorno per un nuovo capitolo!

 

[/expander_maker]

Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

#04 TIPI DI SEGNALE ANALOGICO pt.2

0
Come anticipato nel capito precedente, oggi distingueremo il segnale elettrico in due categorie, in base alla sua risposta alle interferenze e ai disturbi esterni che, ahimè, si trasformano in fastidiosi rumori e fruscii. Da oggi saprete come annientarli!

[expander_maker more=”Read more” less=”Read less”]

Esistono processori d’effetto appositi (de-noiser) che, una volta subita l’interferenza, tentano di rmuoverla facendo però perdere di qualità al segnale originale.
Parleremo di questi dispositivi più avanti, perchè il miglior modo per combattere le interferenze è fare in modo che il nostro segnale non ne sia soggetto ed in questo capitolo vi spieghiamo come fare.

1) IL SEGNALE SBILANCIATO

 

E’ il tipo segnale soggetto a interferenze esterne, e viaggia su due poli, uno negativo (detto massa) e uno positivo.
Tutti i segnali provenienti dalle sorgenti (chitarra, basso, ecc) nascono sbilanciati e tutti i dispositivi audio (mixer, schede audio, processori)  al loro interno lavorano segnali sbilanciati.
Vi chiederete il perchè, visto che è un segnale facilmente soggetto ai disturbi.
La risposta è semplice: finchè il segnale è all’interno dei macchinari, la loro stessa struttura metallica impedisce alle interferenze di entrare, svolgendo una funzione di schermatura.
Il problema delle interferenze si manifesta quindi lungo il passaggio del segnale lungo i cavi.
Il tipo di cavo che trasporta questo segnale è definito cavo schermato coassiale a due poli, e a discapito del nome, ha una struttura molto semplice:

 

 

E’ costituito da una polo centrale (i  classici fili di rame) positivo, ricoperto da una guaina di gomma, a sua volta rivestita di una garza/schermo/calza (altri fili metallici) che porta il segnale di massa. Il tutto è rivestito da un’ulteriore guaina di gomma.
Si dice coassiale perchè il polo positivo e quello negativo giacciono sullo stesso asse.

 

2 ) IL SEGNALE BILANCIATO

 

E’ un tipo di segnale studiato per essere immune alle interferenze, e di seguito ne illustriamo il funzionamento nella maniera più semplice possibile.

 

  • Il segnale sbilanciato a due poli viene fatto passare in un trasformatore di bilanciamento, che lo trasforma in un segnale a tre poli:  massa e due diverse fasi del segnale positivo (chiamate fase e controfase) che hanno però ampiezza dimezzata.
  • La fase porta le informazioni (ripetiamo, con ampiezza dimezzata) del segnale positivo originale, mentre la controfase porta le stesse informazioni ma invertite di grado.
    La controfase è l’esatto opposto della fase, e se la si somma a quest’ultima i due segnali si annullano.

 

  • Fase e controfase viaggiano sul cavo risentendo anche in questo caso i disturbi dell’ambiente. Il disturbo è di un entità che prescinde dal segnale, quindi si aggancia su entrambi i segnali con lo stesso segno (positivo o negativo)
  • Questi segnali entrano nel mixer, dove il trasformatore di sbilanciamento risbilancia il segnale. Esso somma il segnale in fase con l’inverso di quello in controfase (che coincide con quello di fase in tutto, tranne che nel disturbo), ricostruendo in questo modo il segnale originale privo di disturbi.

 

Il cavo che porta segnali bilanciati è simile a quello che porta segnali sbilanciati, ma è dotato di due poli centrali (uno per la fase e uno per la controfase) circondati da una garza che porta la massa, a sua volta rivestita da una guaina di gomma.

 

 

Per quanto riguarda i segnali di potenza essi sfruttano un circuito sbilanciato, poichè non c’è bisogno di schermare l’interferenza in quanto debole rispetto al segnale.
Non tutti gli strumenti (come chitarra e basso) nascono bilanciati, quindi viene utilizzato un dispositivo esterno in grado di bilanciare tutti i dispositivi audio dotati di uscite sbilanciate, la Direct Insection Box (D.I. Box).

Le D.I. Box si dividono in attive (alimentate da batteria dal mixer, offrono una leggera preamplificazione del segnale) e passive (scatole di ferro contenenti un trasformatore di bilanciamento). Queste ultime sono consigliate per segnali di linea in quanto sfruttano il voltaggio del segnale senza che questi ne risentono. Hanno inoltre un costo inferiore rispetto alle attive.
Le D.I Box devono essere poste il più vicino possibile alle sorgenti (chitarra, basso, ecc…)

Ora, che tu sia un beatmaker, un musicista, o un aspitante tecnico del suono,  hai le conoscenze necessarie per mantenere la tua musica immune alle interferenze 🙂

Resta sintonizzato, tra qualche giorno un nuovo capitolo!

[/expander_maker]

 


Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la c conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!

 

 

#03: TIPI DI SEGNALE ANALOGICO pt.1

0
Dopo aver esaminato le caratteristiche fisiche del suono abbiamo parlato del trasduttore, e di come un fenomico fisico si trasformi in uno elettrico. E’ questo segnale elettrico che trasporta tutte le informazioni relative al suono, e su di esso andremo ad agire durante il mixaggio, tramite i processori d’effetto.

[expander_maker more=”Read more” less=”Read less”]

E’ bene capire tutte le caratteristiche di questo segnale, per averne pieno controllo durante la post prduzione de tuo brano.
I segnali elettrici non sono tutti uguali e subiscono una prima divisione in base all’intensità dela corrente elettrica che li caratterizza, il voltaggio (V).

 

 

 Vengono divisi in:
1.SEGNALE MICROFONICO : Generato da dispositivi passivi (per esempio il microfono dinamico), E’ un segnale molto debole, dell’ordine di grandezza dei millivolt. (0 < V < 0.075)

 

2.SEGNALE DI LINEA: Generato da dispositivi attivi (che necessitano di un alimentazione), è un segnale più forte rispetto al microfonico, dell’ordine dei volt. (0,075 < V < 24,5)

 

3.SEGNALE DI POTENZA Scaturisce da amplificatori,  detti di potenza. Il segnale di linea non ha infatti l’intensità  necessaria per alimentare il diffusore (le casse!), quindi si necessita di un dispositivo che trasformi il segnale di linea in potenza.
Questo segnale è caratterizzato da un voltaggio superiore (24,5 < V < 100), e porta con se una grande quantità di corrente (flusso di elettroni).
Questi tre tipi di segnale possono essere a loro volta divisi in due tipologie (bilanciato o sbilanciato) in base alla loro risposta alle interferenze esterne.

 

Anche i disturbi e le interferenze sono di due tipi: 
– elettromagnetici (dovuti al magnetismo)
– elettrostatici (dovuti all’elettricità).
Quando il disturbo entra nel cavo diventa ascoltabile in audio..

 

 

Il segnale microfonico ha una forte tendenza a raccattare i disturbi, in quanto l’interferenza è dell’ordine dei millivolt e risulta quindi molto percettibile.
Il segnale di linea è talmente alto (dell’ordine dei volt) che non risente di interferenze esterne (dell’ordine dei millivolt).
Il segnale di potenza, a maggior ragione, non risente del disturbo in quanto è troppo forte rispetto al disturbo stesso.
Il rapporto tra segnale e disturbo viene definito rapporto segnale-rumore, e più il risultato è alto, più il segnale sarà pulito.

 

Spiegare la differenza tra un segnale bilanciato ed uno sbilanciato richiede un capitolo a sè, e sarà il prossimo argomento trattato.
Per ora concentratevi su questa prima parte, e vi basti sapere che il segnale bilanciato altro non è che un bell’escamotage per rendere il segnale eletrico (la nostra musica) immune alle interferenze.

[/expander_maker]



Non scordarti di supportare, condividere e divulgare le lezioni che affrontiamo: rendi la conoscenza virale e aiutaci a crescere! Hashetic Front ha dei costi di mantenimento e le tue donazioni, per quanto modeste, sono essenziali!